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1. Problem Definition 
 

1.1. Challenges in medical imaging 

 

In the domain of medical imaging, 

radiology holds a dominant position, offering 

deep insights into the health of patients. This 

field enables doctors to observe and decipher 

internal irregularities. Radiologists, 

positioned at the forefront of this effort, 

interpret a wide range of imaging scans, 

including Computed Tomography (CT) and 

Magnetic Resonance Imaging (MRI), as well 

as conventional X-rays.  Their discerning 

analyses directly steer patient care decisions 

and shape treatment pathways. 

Yet, as the pulse of healthcare demand 

varies, radiology departments face a pressing 

challenge: accurately forecasting patient 

exam volumes. This need stems from a desire 

to optimize healthcare delivery, but the stakes 

are multifaceted. Operational challenges 

emerge when unpredicted volumes lead to 

resource mismatches and equipment 

underutilization. Radiologists, caught off-

guard by fluctuating workloads, may grapple 

with increased fatigue and declining morale. 

Furthermore, patients bear the brunt of these 

inefficiencies, facing potential care delays 

that might hinder their diagnosis and 

treatment. From an institutional perspective, 

such property can strain financial resources 

and complicate reimbursement processes. 

 

1.2. Radiology with Machine Learning 

 

Understanding these challenges, the 

conceptual foundation of our study is rooted 

in healthcare resource optimization, honing 

in on radiology. We recognize the imperative 

of forecasting patient exam volumes, not only 

for the immediate future, but also up to a 

horizon of 3-4 days. This volume reflects 

both captured imaging scans and upcoming 

scheduled ones, influenced by diverse factors 

like institutional scheduling systems, 

historical trends, and even cyclical healthcare 

demands. The term “physician workload” 



encapsulates the comprehensive 

responsibilities shouldered by radiologists, 

with a spotlight on the interpretation of 

diagnostic images. 

Given the burgeoning emphasis on value-

based care, the timeliness and precision of 

these interpretations become even more 

paramount, impacting patient outcomes, 

institutional reputation, and reimbursement 

dynamics. With this backdrop, our method 

embarks on a mission to employ machine 

learning in crafting a predictive model adept 

at forecasting patient exam volumes in 

radiology. By integrating historical data with 

real-time scheduling intricacies, our model 

equips healthcare administrators and 

radiologists with predictive insights, 

facilitating well-informed planning and 

effective resource distribution. This 

convergence ultimately advances the 

pinnacle of patient care and operational 

proficiency, aiding administrators and 

radiologists in strategic decision-making and 

resource allocation, thereby ensuring the 

utmost quality in patient care and 

departmental efficiency. 

 

 

2. Literature Review 
 

As part of a literature review on radiology 

examination volume prediction we 

discovered three studies with particular 

relevance to our project.  

 

2.1. Radiological Exam Volumes 

Prediction with Prophet Algorithm 

 

In 2021, Becker, Chaim, Vargas et al. [1] 

evaluated the use of the Prophet algorithm, an 

open-source Bayesian structural time series 

model proposed by Meta, to predict radiology 

examination volumes. They found that the 

algorithm captures weekly, seasonal, and 

overall trends to allow for better radiologist 

planning and labor allocation. While our 

project focuses on predicting one, two or 

three days in advance predictions, this paper 

details a useful open-source algorithm and 

promising results for weekly volume 

prediction.  

 

2.2. Artificial Intelligence Predictive 

Analytics MRI Appointment Prediction 

 

Chong, Tsai, and Lee et al. [2] used 

outpatient MRI appointments data to train a 

no-show prediction model. A predictive 

model developed with XGBoost, a decision 

tree-based ensemble machine learning 

algorithm that uses a gradient boosting 

framework, was deployed after various 

machine learning algorithms were evaluated. 

The simple intervention measure of using 

telephone call reminders for patients with the 

top 25% highest risk of an appointment no-

show as predicted by the model was 

implemented over 6 months.  

A key difference between this paper and 

our project problem definition is that this 

paper investigates predicting no-shows 

instead of examination volume. However, the 

model architectures, inputs, and outputs of 

the models are similar to those which will be 

evaluated in our project.  

  



2.3. Patient Volume Prediction with Deep 

Learning and Statistical Models 

 

In 2023, Pala et al. [3] proposed a new 

method to predict the multi-month patient 

examination volume. For prediction 

processes, both deep learning models such as 

LSTM, MLP, NNAR and ELM, as well as 

statistical based prediction models such as 

ARIMA, SES, TBATS, HOLT and THETAF 

were used. The results showed that the LSTM 

model outperformed the other models in 

estimating the monthly number of 

radiological case images. The prediction 

window for these models was evaluated at 

12-month, 24-month, and 30-month intervals. 

The goal of this paper was similar to our 

project goal and the Prophet algorithm paper 

[1], but the prediction windows it uses were 

far larger than our anticipated project’s 

windows.  

 

In conclusion, the Prophet algorithm 

paper [1] most closely resembles our 

project’s intended methods and prediction 

output. Thus, while the variety of our 

literature was valuable in assessing a variety 

of models and research goals, the Prophet 

algorithm paper [1] serves as the main 

foundation to our project’s methods and 

evaluation.  

 

3. Methods 

 

3.1. Overview 

 

For this study, we leveraged four primary 

datasets: A1, A2, T1, and T2. These datasets 

span a duration from 2027/07/06 to 

2028/08/08, providing a comprehensive 

overview of patient exam volumes during 

this period. Our exploration of the datasets 

began with an intent to decipher underlying 

patterns, potential anomalies, and inherent 

structures. The analysis was centered around 

the key temporal parameters: 

● T0: Represents the order time. 

● T1: Denotes the time when the task 

was added to the hospital system 

schedule. 

● T2: Marks the scheduled time for 

interpretation. 

● T3: Marks the task arrival time. 

● T4: Signifies the actual 

commencement of the interpretation. 

● T5: Indicates task completion, 

serving as our target variable. 

 

3.2. Exploratory Data Analysis 

 

3.2.1. Daily Distribution Insights 

An inspection of daily distribution 

patterns for the years 2027 and 2028 revealed 

consistent trends across both years for all 

datasets. 
 

 

Figure 3.2.1.1: Daily distribution for A1 

 
 

 

 

  



Figure 3.2.1.2: Daily distribution for T1 

 
 

* Since the daily distribution for all datasets 

are similar, the graphs for A2 and T2 are 

placed in the appendix for your reference. 
 

3.2.2. Weekly Distribution Insights 

All datasets demonstrated a higher 

volume of tasks during weekdays. Most of 

the exams were conducted during weekdays. 

Only small portions of them were done on 

weekends. 

 
Figure 3.2.2.1: Weekly distribution for A1 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.2.2: Weekly distribution for T1 

 
 

* Since the weekly distribution for all 

datasets are similar, the graphs for A2 and T2 

are placed in the appendix for your reference. 

 

3.2.3. Ratio of Different Days 

Before the modeling, we want to inspect 

how many of the tasks are done before 1 or 7 

days. This information helps us determine the 

accuracy of the predictions of our model. 

First, we inspect the ratio of different 

days by at least 1 day, which should tell us 

how many propositions of the cases are 

useful for the model. Since the accuracy of 

prediction might be terrible if the majority of 

the cases are finished within 1 day. 

● A1 and A2 datasets 

For the A1 / A2 dataset, there are 

approximately 74% / 77% of the 

cases showing that T1 is at least 1 

day before T2. 

● T1 and T2 datasets 

For the T1 / T2 dataset, there are 

approximately 52% / 55% of the 

cases showing that T1 is at least 1 

day before T2. 
 

Figure 3.2.3.1: A1 ratio of different days [1 day] 



 
 

Figure 3.2.3.2: A2 ratio of different days [1 day] 

 
 

Figure 3.2.3.3: T1 ratio of different days [1 day] 

 
 

Figure 3.2.3.4: T2 ratio of different days [1 day] 

 
 

Second, we inspect the ratio of different 

days by at least 7 days as well. It could give 

us a glance of the distribution for the days, 

which also helps us evaluate the effect of 

outliers. 

● A1 and A2 datasets 

For the A1 / A2 dataset, there are 

approximately 55% / 56% of the 

cases showing that T1 is at least 1 

day before T2. 

● T1 and T2 datasets 

For the T1 / T2 dataset, there are 

approximately 36% / 42% of the 

cases showing that T1 is at least 1 

day before T2. 

 
Figure 3.2.3.5: A1 ratio of different days [7 days] 

 
 

Figure 3.2.3.6: A2 ratio of different days [7 days] 

 
 

Figure 3.2.3.7: T1 ratio of different days [7 days] 

 
 

 

 

  



Figure 3.2.3.8: T2  ratio of different days [7 days] 

 
 

3.3. Model Architecture and Training 

 

3.3.1. Model  

After a comprehensive review of 

potential algorithms, the LightGBM 

algorithm was identified as the most suitable 

model for this study. LightGBM, a gradient 

boosting framework, has gained recognition 

in the data science community for its 

efficiency in handling voluminous datasets 

and its robustness against overfitting. This 

gradient boosting framework, specifically 

designed for speed and performance, was 

tailored in two distinctive variants for our 

modeling endeavor: 

● Standard Models:  

We implement both a regression 

model and a classification model to 

yield optimal prediction results:  

○ LightGBM Regressor 

Predict the upcoming volume 

for the next 1 to 7 days; 

max_depth = 8 

○ LightGBM Classifier 

Predict whether the next 1 to 7 

days will be a busy day or not; 

max_depth = 8 

max_depth: hyperparameter,   

maximum distance between 

the root node of each tree and 

a leaf node.  

busy day: a day with top 50% 

highest volumes 

 

● Advanced Models:  

To obtain more accurate predictions 

for the busiest days, we add two 

advancements for our models:  

○ Weighted Regressor 

We incorporate the target 

value (T5 counts) as a sample 

weighted to the model, which 

should generate an increased 

precision in the tasks which 

have higher volumes. 

○ Ensemble Model 

We develop a formula to 

ensemble the predicted result 

from the regressor (y_pred) 

and classifier (p). 

y_pred * (1 + (p - 0.5) * 5%) 

where y_pred is the predicted 

volume from the regressor, p 

is the predicted probability 

from the classifier 

 

3.3.2. Features 

The essence of any predictive model's 

effectiveness lies in the information it takes 

in. In our project, we combined past data with 

time-related characteristics to extract and 

formulate: 

1. Normalized T5 counts, offering a 

glance into the past week's trends. 

2. The weekday of the target date, 

capturing cyclic weekly patterns. 

3. The month of the target date, 

encapsulating broader monthly 

fluctuations. 



4. Scheduled exam counts for the target 

date, directly influencing the tasks' 

progression. 

 

Normalized T5 Counts serve as a 

beacon into recent trends, offering the model 

a glance at the past week's rhythms. By 

normalizing the completion counts from the 

preceding seven days, the model is equipped 

to discern short-term patterns, ensuring it 

remains sensitive to immediate changes or 

anomalies in task completions. 

 

Simultaneously, the Weekday of the 

Target Date infuses the model with an 

understanding of cyclic weekly patterns. 

Radiology tasks, akin to many hospital 

operations, exhibit a rhythmic ebb and flow 

throughout the week. Whether it's a surge due 

to scheduled procedures or a quiet day, this 

feature ensures the model is attuned to these 

cyclical nuances. 

 

Broadening the temporal horizon, the 

Month of the Target Date captures 

overarching patterns that play out over longer 

time frames. Whether it's seasonal health 

trends, hospital administrative decisions, or 

equipment maintenance schedules, this 

feature positions the model to anticipate 

broader monthly fluctuations. 

 

Lastly, the Scheduled Exam Counts for 

the Target Date act as a direct barometer of 

the tasks' progression. As the number of 

scheduled exams for a day swells or recedes, 

it directly impacts the volume of radiology 

tasks. This feature provides the model with a 

real-time pulse of the day's potential 

workload, allowing for informed and 

accurate forecasts. 

 

3.3.3. Procedure 

Our training paradigm was underpinned 

by an accumulated rolling window strategy. 

In this approach, the model was trained on a 

continually expanding window of data, 

initiating predictions from the 31st day 

onwards. This temporal consistency in the 

training strategy ensures that the model is 

continually updated with the most recent data, 

thus enhancing its predictive accuracy. 

 

  3.4. Evaluation Metrics 

 

To gauge the model's performance, we 

embraced a triad of evaluation metrics: 

● Mean Absolute Error (MAE):  

A straightforward metric, MAE 

quantifies the average magnitude of 

errors between the predicted and 

actual values, offering an 

unambiguous view of the model's 

accuracy. 

● Mean Absolute Percentage Error 

(MAPE):  

Providing a relative perspective, 

MAPE computes the prediction error 

as a percentage, offering insights into 

the model's accuracy in relative terms. 

● Symmetric Mean Absolute 

Percentage Error (SMAPE):  

An evolution of MAPE, SMAPE 

corrects its inherent asymmetry, 

ensuring uniform treatment of errors, 

irrespective of direction. 

 

 

  



4. Analysis 
 

4.1. Standard Model vs. Weighted Model 

 

4.1.1. A1 Dataset 

Implementing the LightGBM regressor 

model trained with an accumulating rolling 

window with or without weighted loss 

rendered promising results for predicting the 

next 1st ~ 7th days. SMAPE results all fell 

within 7.30% ~ 9.09% Notably, the 

performance of the top 10% cases already 

performed better without weighted loss. 

We found that with weighted loss, the 

performance for top 10% cases improved but 

overall performance would be slightly 

worsened. 
 

Figure 4.1.1.1: A1 all data results [weighted] 

 
 

Figure 4.1.1.2: A1 top 10% data results [weighted] 

 

 

4.1.2. T1 Dataset  

Results for implementing the model on 

the T1 data were similar to those of the A1 

data model results. With or Without weighted 

loss, for predicting the next 1st ~ 7th day, 

SMAPEs all fell within 6.56% ~ 7.99% With 

weighted loss, the performance for top 10% 

cases were improved but overall performance 

was slightly worsened.  
 

Figure 4.1.2.1: T1 all data results [weighted] 

 
 

Figure 4.1.2.2: T1 top 10% data results [weighted] 

 
 

4.1.3. A2 Dataset 

On the A2 data, predicting the next 1st ~ 

7th days returned SMAPEs all within 8.40% 

~ 11.8% With weighted loss, both the 

performance of top 10% cases and overall 

performance worsened. 
 



 

Figure 4.1.3.1: A2 all data results [weighted] 

 
 

Figure 4.1.3.2: A2 top 10% data results [weighted] 

 

 

4.1.4. T2 Dataset 

Results for the T2 data were very similar 

to those of T1. Predicting the next 1st ~ 7th 

days returned SMAPEs all within 7.43% ~ 

8.92%, with or without weighted loss. With 

weighted loss, the performance for top 10% 

cases were improved but overall performance 

was slightly worsened. 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1.4.1: T2 all data results [weighted] 

 
 

Figure 4.1.4.2: T2 top 10% data results [weighted] 

 
 

4.2. Standard Model vs. Ensemble Model 

 

4.2.1. A1, T1, and A2 Datasets 

For A1, T1, and A2 datasets, we found 

that the performance for top 10% cases were 

improved by using ensemble method. But the 

overall performance would be slightly 

worsened. 

It was what we expected since the 

ensemble learning method would intensify 

the prediction of data with high weight. 

Therefore, the model would perform better 

on those busiest days (top 10% cases) but lose 

the accuracy for overall prediction. 
 

 

 

 



Figure 4.2.1.1: A1 all data results [ensemble] 

 
 

Figure 4.2.1.2: A1 top 10% data results [ensemble] 

 
 

Figure 4.2.1.3: T1 all data results [ensemble] 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 4.2.1.4: T1 top 10% data results [ensemble] 

 
 

* Since the results for A1, T1, and A2 

datasets are similar, we leave the table for 

dataset A2 in the appendix for your reference. 

 

4.2.2. T2 Dataset 

For the T2 dataset, we still found that the 

performance for the top 10% cases were 

improved by using ensemble method. But 

some predictions in all cases even have better 

performance when using ensemble method. 

 
Figure 4.2.2.1: T2 all data results [ensemble] 

 
 

 

 

 

 

 

 

  



Figure 4.2.2.2: T2  top 10% data results [ensemble] 

 
 

4.3. Weighted Model vs. Ensemble Model 

 

4.3.1. All Datasets 

For All datasets, we found that the 

performance was much better on both the top 

10% cases and all cases when using ensemble 

method. It was expected since the ensemble 

learning method would improve the accuracy 

by aggregating the regressor prediction and 

classifier prediction. 
 

Figure 4.3.1: A1 comparison results [W vs. E] 

 
 

 

 

 

 

F 

igure 4.3.2: T1 comparison results [W vs. E] 

 
 

* Since the results for A2 and T2 datasets are 

similar, we leave the table for A2 and T2 

datasets in the appendix for your reference. 

 

4.4. Summary 

 

Considering the goal of correctly 

predicting radiology appointments with little 

notice (ideally correctly predicting the 

number of visits 1-7 days in advance), the 

results of our LightGBM model are very 

promising.  

For all cases, predicting the next 1st ~ 7th 

days from our ensemble model returned 

SMAPEs all less than 10%  

For the top 10% cases (busiest days), 

predicting the next 1st ~ 7th days from our 

ensemble model returned SMAPEs all less 

than 7.5% 

This intriguing experiment result opens 

up an avenue for us to assist the radiologist 

schedule healthcare resources effectively in 

the future. 

 



5. Findings and 

Recommendations 

 

5.1. Findings 

 

From our experiments, we find that there 

are several things can be referred for future 

endeavor:  

 

5.1.1. General findings 

● Influential features:  

Counts of scheduled exams on 

target date: It’s expected since the 

counts of scheduled exams on target 

date is the most direct factor to impact 

our prediction. 

Counts of ending exams in the 

previous 7 days: It’s expected that 

the counts of ending exams in the 

previous 7 days also impact our 

models significantly. It might be 

related to the period of follow up 

appointments and the routine 

schedule of the exams. 

● Basic regressor can provide us with 

good enough predictions. 

● The interpretability of the basic 

classifier is enough to predict whether 

a day is busy or not accurately. 

 

5.1.2. Findings with weighted models 

● After applying sample weight, the 

predictions for the top 10% cases in 

A1, T1, and T2 datasets were 

improved. 

● The predictions for the A2 dataset 

were worsened instead. 

● The predictions of the top 10% cases 

were worse than all cases for the T2 

dataset. 

 

5.1.3. Findings with ensemble models 

● For all datasets, the predictions of the 

top 10% cases were improved 

significantly. 

● In contrast, the performance of all 

cases for all datasets dropped slightly. 

 

5.2. Recommendations 

 

In conclusion, we provide several steps 

for the future researchers to do, which should 

advance the performance of models if needed.  

● Include more features 

● Solve cold-start issue 

● Optimize the threshold of the 

classifier 

● Optimize the parameters of ensemble 

models 
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7. Appendix 
 

7.1. Other graphs for Exploratory Data 

Analysis 

 

Figure 3.2.1.3: Daily distribution for A2 

 
 

Figure 3.2.1.4: Daily distribution for T2 

 
 

Figure 3.2.2.3: Weekly distribution for A2 

 
 

 

 

 

Figure 3.2.2.4: Weekly distribution for T2 

 
 

7.2. Other graphs for Standard Model vs. 

Ensemble Model 
 

Figure 4.2.1.5: A2 all data results [ensemble] 

 
 

Figure 4.2.1.6: A2 top 10% data results [ensemble] 

 

 

https://link.springer.com/article/10.1007/s11277-023-10341-3
https://link.springer.com/article/10.1007/s11277-023-10341-3


7.2. Other graphs for Weighted Model vs. 

Ensemble Model 

 
Figure 4.3.3: A2 comparison results [W vs. E] 

 
 

Figure 4.3.4: T2 comparison results [W vs. E] 

 

 

  



7.4. The prediction curve of top 10% cases 

for each dataset 

 

7.4.1. A1 dataset 
 

Figure 7.4.1.1: A1 predictions for top 10% cases with 

standard model 

 
 

Figure 7.4.1.2: A1 predictions for top 10% cases with 

weighted model 

 
 

Figure 7.4.1.3: A1 predictions for top 10% cases with 

ensemble model 

 
 

 

 

 

7.4.2. A2 dataset 

 
Figure 7.4.2.1: A2 predictions for top 10% cases with 

standard model 

 
 

Figure 7.4.2.2: A2 predictions for top 10% cases with 

weighted model 

 
 

Figure 7.4.2.3: A2 predictions for top 10% cases with 

ensemble model 

 
 

 

  



7.4.3. T1 dataset 

 
Figure 7.4.3.1: T1 predictions for top 10% cases with 

standard model 

 
 

Figure 7.4.3.2: T1 predictions for top 10% cases with 

weighted model 

 
 

Figure 7.4.3.3: T1 predictions for top 10% cases with 

ensemble model 

 
 

 

 

 

 

 

7.4.4. T2 dataset 
 

Figure 7.4.4.1: T2 predictions for top 10% cases with 

standard model 

 
 

Figure 7.4.4.2: T2 predictions for top 10% cases with 

weighted model 

 
 

Figure 7.4.4.3: T2 predictions for top 10% cases with 

ensemble model 

 

 

 

 


